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ABSTRACT

Convexity preserving properties of certain totally
positive density functions are shown to hold under
weaker restrictions. These results generalize

work of Karlin (1963) and Karlin and Proschan (1960)
concerning convexity preserving transformations.
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ON CONVEXITY PRESERVING FAMILIES
OF PROBABILITY DISTRIBUTIONS+

by

W. R. van ZwetH

1. INTRODUCTION

Let Fe be a family of probability distribution functions on R1 with
parameter 6 ¢ TC R1 , and let X denote the union of the supports of these
distributions. For k > 0, let {go, Bys +oes gk+l} be a set of real-valued
finite functions on X that are integrable with respect to Fe for all

0 ¢ T and define
X4 (8) =fgi(x) dFg(x), 1=0,1, ..., k+1. (1.1)

Following S. Karlin and W. J. Studden in [3] with a minor modification, we shall
say that {go. Bys oo gk+1} constitute a weak complete Tchebycheff system
(WCT-system) if for each 0 gm<k+1 and all Xg € X < ee <X € X the

determinant

det(gi(xj))i’jga’ s B (1.2)

the system is called a complete Tchebycheff system (CT-system) if the inequality
is always strict, The difference between this definition of a WCT-system and the
one given in [3] is that we retain the case where 8g» By» r-c» By are linearly
dependent on X for some m S k + 1 ; in that case any cholce of Boel’ 't el

will trivially satisfy definition (1.2). We shall also express inequalities

1-
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(1.2) by saying that is generalized convexr with respect to the WCT-system

!
(QO. ot gk}.

Our discussion of WCT-systems will involve the related concept of total
positivity (cf. [1]). A function f(x, 8) on X x T is said to be totally positive
of order n(TPn) if for every 1 <m < n, all Ry € Xg € ves € x, € X and all

61 < 82 X e € e_ £t X5

)) >0 . (1.3)

dot(f(x,, 1,31, ..., m =

€
J

The first question that comes to mind in this context is whether one can find

conditions on the family Fe that ensure that {xo. Xps s xk+1) will be a

WCT-system on T whenever {go. Br oo 8k+l} constitutes a WCT-system on X .

If the family F_, possesses densities p(x, 68) with respect to a o-finite

measure i with spectrum X and honce
X, (8) -fgi(x) p(x, 8) du(x) ,
this question is easily answered. We have for each 0 ¢ m < k + 1 (cf. (11

det(xi(e 3= Poesroni ..fdet(gi(xj)) det(p(xi. ]

)) du(x,) ... du(x)
E Xg<Xy € e X 0 2

3

where in each determinant i and j run from 0 tom . It follows that the

condition that p 1is TP is certainly sufficient; since we require that

k+2

(xo. e xk#l) will inherit the WCT-property for every WCT-system (go. sony gk+1}.

the condition is essentially also necessary (by "essentially" is meant that for
any 91 R s % e_ the defining inequality (1.3) need not hold on a set of
product-measure 0). We note that the fact that Fe are probability distribution
functions is not used in establishing the condition.
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In view of this general result it is.hardly surprising that recent discusgsions
of convexity preserving properties (cf. [1) and [2]) have been confined to
families of densities that are totally positive of the appropriate order. However,
one usually does not discuss the class of all WCT-systems of a given order but
restricts attention to a relatively small subclass (e.g. the case where
gy ™ gi for 1 =0, 1, ..., k) . Also one often imposes additional restrictions

on the family F

to ensure that for those systems } that are

8 (8gs +oes Biyy

considered, {xo, o, xk+l} will also belong to some restricted class.

In Sections 3 and 4 of this paper we investigate how far the TPk+2 condition
for p can be relaxed in two such restricted cases that seem to be important

in practice. Like Section 1, the second section is of an expository character.




2. CONVEXITY OF ORDER k

Let f be a real-valued finite function defined on an arbitrary set
YC Rl . For k > 0 we shall say that f is convex of order k (Ck) bl
is generalized convex with respect to the CT-system {1, y, yz, veey yk}, i.e.,

if for all Yy € V9 < oo € Vigo

2 k
2 k
1 Y2 yZ NS yz f(yz)
Df(yll * ey Yk+2) - . . : o . (2.1)
1 2 k

Yee2 Va2 * 0 0 Y2 FO040)

For k = 0, 1, (2.1) reduces to the ordinary definitions of nondecreasing

or (measurable) convex functions. Generally speaking (2.1) is an extension of
the concept of nonnegative (k + 1) - th derivative. Ck functions were
extensively studied by T. Popoviciu in [6]. We note that S. Karlin [1] refers
to Ck functions as convex of order (k + 1) .

1f Pm denotes a polynomial of degree at most m , then equivalent

definitions of the Ck property are obviously

(A) (cf. [1]). For every P,, f - P, changes sign at most (k + 1)

k’ k
times on Y . If it does have (k + 1) sign-changes, the signs occur
in the order (—)L+1, (—)k. eeey +, =, + for increasing values of the
argument.

(B) For every Py Sy S sen S P u ® Y , the Pk+1 having Pk+l(yi) =
f(yi), i=1,2, ..., k+ 2, has nonnegative coefficient for its

(k + 1) - th degree term.



There is also a close connection with differences. Let

A; £(y) = f(y + h) - £(y)

m 1 m1 - m-j m (2'2)
1) = 6 47 € = B (D HWECRED
and generally
A" £ly) = A1 Am-l £(y) =
i b Ry Byaevedho
(2.3)
m
-} ™! ) f(? + % h, ) ‘
3=0 1511<12<...<1j§m v=l v
Furthermore let
DN s e N ol
Gl & kb2
Dg(yl, S yk+2) = - (Yj . yi) : (2.4)

1<ic<j<k+2

since the denominator is positive for Yy <Y, € e % Yar Df may
be replaced by Dg in definition (1.1). The following relation between

D? and differences may be proved by induction on k .

Lemma 2.1:

If N denotes the set of permutations =n = (v(1), n(2), ..., m(k + 1)) of

the numbers 1, 2, ..., k + 1 , then

e kfl . kfl
A f(y) = h D*(y, y +h s neay Y F h ) . (2.5)
L CRRRL, WYY ge1 L genm ° m(1) gey TV



We note that for h1 = h2 = e W hk+1 = h, (2.5) reduces to
A:+l £(y) = (k + 1)1 wFY DE(y, ¥ + hy wvey y + (k+ 1) 1) . (2.6)
It follows from Lemma 2.1 that if f {is Ck on Y , then for all hl’ h2, -
hk+1 >0,
At Ep 20 (2.7)
17 M
B
whenever defined, i.e., whenever all y + z hi eY .
v=1 v

In the special case that Y 1is an interval there is also a converse result
and the following defirition of “he Ck property is equivalent to (2.1) in this

case:
(C) f 1is (Lebesgue)-measurable and for h >0, ye Y, y+ (k+1) heY,

e 20 (2.8)

In this case, however, the Ck property is hardly a generalization of nonnegative

(k + 1) - th derivative at all. 1In fact, if Y 1is an open interval and

k > 1, definition (2.1) ensures continuity of f on Y and is equivalent to

(k-1)

(D) f 1is (k - 1) times continuously differentiable and f is convex

on Y .

Finally we consider the special case where Y 1is a set of consecutive integers.

For integer h>0

h-1 b-1 K+l
el 10 JCTD SRRV B f(y + 7 h ) . (2.9)
=0 =0

1 hes1



Combining (2.6) and (2.9) we find that the Ck property may be defined in this

case by
(E) For all y,y+k+1lcey¥Y

A:+1 £(y) > 0 . (2.10)

For further details concerning the definitions given above the reader is referred

to [6].

Let fl and f2 be real-valued finite functions on Y . We shall say that
f2 is Ck with respect to f1 on Y if there exists a Ck function f on
fl(Y) such that f2 = f(fl) on Y . If fl is nondecreasing on Y and f2
is constant on any set where fl is constant, this reduces to

1 £() £y £¥(y,) £,(y,)
1Y A LS R ] 2%}
2 k
1 £,(@y)) £,() ... £1(y)) £,(y,)
. >0 (2.11)
1 £(y ) £20y,) e E50nL) £y,
1.2’ T1Vie2? ot T1Vke2 2 k+2

for all Y1 €Y .

Y2 et S Ve
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3. PRESERVING CONVEXITY OF ORDER _k

Returning to the sectup of Section 1, we let g be a real-valued finite
function on X that is integrable with respect to Fe for all 8 ¢ T and
define

x(0) = [gx) dF,(x) .

We shall say that the family Fe prescrves convexity of order k 1if x 1is
Ck on T whenever g 1is Ck on X, i.e., whenever g 18 gencralized convex
with respect to (1, x, ..., xk} then x 1s generalized convex with respect to

k

{1, 6, ..., 8} . 1In (1] S, Karlin has shown that if densities p(x, 6) with

respect to p exist, then a sufficient condition for F_, to preserve convexity

]

of order k 1s that p is TP and that whenever g 1s a polynomial of

k+2

exact degree m < k , then x 1s also a polynomial of exact degree m . According

to the result of Section 1 the first part of this condition ensures that

is generalized convex with respect to the WCT-system
i
fx ar 0, 10,1, ..., x,

whereas the second part ensures that this is equivalent to generalized convexity
with respect to {1, 6, ..., ek} L
However, this condition is not necessary. For k = 0 a condition that is

necessary as well as sufficient was given by J. Krzyz in [4].

Lemma 3.1:

X 1s nondecreasing on T whenever g 1s nondecreasing on X if and only

if the family F, 1is stochastically increasing (i.e., Fe(x) is nonincreasing

e
in 6 for every fixed x).
Since the TP, property of p 1s equivalent to monotone likelihood ratio,

Krzyz's condition is weaker than Karlin's for k = 0 (cf. [5]).




For general kit is also casy to find a necessary and sufficient condition,
provided that we restrict attention to those Ck functions g that can be

extended to a Ck function on an open interval containing X . Since the convex
functions constitute a convex cone spanned by the linear functions and functions

of the form

we find from definition D of Section 2 that the convex cone of Ck functions

is spanned by the polynomials Pk of degree at most k and functions of the form

hk(x) =0 for X < x

<
-

0

(x - xo)k for X > Xg -

For k = 0 this is obviously also true. It follows that it is sufficient as well
as necessary to require that yx be Ck whenever g 1is of one of the forms
mentioned above. However, 1f g 1s a polynomial of degree at most k , then so
is -g and as a result both x and =-x are required to be Ck » which implies

that x 1is also a polynomial of degree at most k . Hence we have proved

Lemma 3.2:

x 1is Ck on T whenever g |is Ck on an open interval containing X , if

and only if for every X
S - x aF (%)
0 )

is Ck on T and whenever g 1s a polynomial of degree at most k the same

holds for x .
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We note that for k < 1 the condition that the Ck function g can be

extended to a Ck function on an open interval containing X is alwajs satisfied.
For k = 0 the lemma reduces to Lemma 3.1.

Although for k > 1 Lemma 3.2 seems to be fairly useless for practical
purpores, the results obtained so far do seem to indicate that there exists a ,

large class of Ck preserving families that do not possess any total positivity

propertics. The results in the remainder of this section exhibit a number of

these families.

Theorem 3.1:

Let Fo and F be distribution functions with characteristic functions

00 and ¢ respectively, and suppose that F is infinitely divisible and has

F(-0) =0 . If for t > O, F, denotes the distribution function corresponding

to ¢0 C ¢t , then the family Ft’ 0 ¢t <=, preserves convexity of all orders.

Let Gt denote the distribution function corresponding to ¢t and let

Xt, t > 0 , be a stochastic process with nonnegative stationary independent

increments for which XO’ xs+t'- Xs and Xt, s, t > 0 , have distribution

functions F Gt and Ft respectively. For fixed t >0 and h > 0 define

0’

Z =

£ ™ Featn ~ Xepqeenppe 171 2 e k4L

Zl, ZZ’ 000r Zk+1 are independent and identically distributed random variables

that are also independent of Xt . Hence, because of the exchangeability of

Zys coes Zopy s
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k+1
k+1-4 [k+1
E[z " j(;) B Xeagn) | xt'x] )

3=0
[ k+1
«=E| } (-1)k+1-3 (Hl) glx + 2, + ... +2)| =
0 3 1 3
| J=
[ k+1
=E| J (-1ktd Blx + 2, 4 ... 42, )] .
| §=0 14 <oveed cktl 1 b
= j-
= E A;*l 2 g(xi] e
1'.'.’ k+1
Since Zl’ < oqm Zk+1 2 0 with probability 1, the last expression is nonnegative

for every C, function g and all x by (2.7). As a result

k

k+1

0o [ 0 1) o]

for all t >0 and h>0 . As x 1s a measurable function defined on the

interval [0,») , it is C, by definition C of Section 2.

k
If we consider only integer values of t in Theorem 3.1, we may drop the

assumption that F 1is infinitely divisible without affecting the proof. The

Ck character of x on the integers now follows from A§+1 X 2 0 by definition

E of Section 2, Specializing to the case where FO is degenerate at 0 we

ohtain:

Corollary 3.1:

Every family Fn’ n=1, 2, ..., of n-fold convolutions of a distribution

function F1 having Fl(-O) = 0 preserves convexity of every order.

We note that the fact that Fn preserves convexity of order k was proved

by S. Karlin and F. Proschan in [2] under the additional assumption that Fl




possesses a density p that is a Pélya féequency density of order k + 2
(L.e., p(x-y) is TP 4o 1n x and y) .
Another special case of Theorem 3.1 is obtained by assuming F to be

degenerate at 1, in which case the theorem reduces to

Every location parameter family Fe(x) =G(x -0), ~»<f <>,

preserves convexity of every order.

This result is of course rather trivial. Without invoking Theorem 3.1,

it follows at once from

k: k+1

i x@) = 85 £alx +0) 4600 = S g(x 4 0) do) .

In the same manner one easily verifies

Every scale parameter family Fe(x) = G(x/8 ), 0 <6 <=, preserves
convexity of every odd order. If moreover G(-0) = 0 , then the

family preserves convexity of all orders.

12
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4. INVARIANT CONVEXITY PRESERVING FAMILIES

Let B1s 8y X and X9 be defined as in Section 1. We shall say that
Fe is invariant convexity preserving if, whenever 8, is nondecrecasing and
£, is convex with respect to g, on X , then Xy is nondecrcasing and Yy
is convex with respect to X, on T . In terms of WCT-systems we may express
this property by requiring that for every WCT-system of the form (1, 8> gz}
the corresponding system {1, Xp XZ} is also a WCT-system.

In the first place this definition asserts that the family Fe preserves
the monotonicity of 8, and hence by Lemma 1 the family is stochastically
increasing; F, also preserves convexity (of order 1) provided that the

8

parameter is subjected to a suitable nondecreasing transformation
n = n(8) = Sx dF,(x)

Moreover, this convexity preserving property is invariant under nondecreasing
transformations g, of the random variable, the appropriate monotone transformation
of 8 then becoming Xy It is precisely because of this invariance that we

do not require that F_, be convexity preserving with respect to 6 1itself; i.e.,

e
that n be linear in 6 . This property would be destroyed by nonlinear

transformations anyway and would only result in fixing a possibly awkward

gy

parametrization.

From the general result of Section 1 it follows that Fe is invariant

convexity preserving if the density p is TP3 . The following theorem provides

& necessary and sufficient condition,

Theorem 4.1:

is invariant convexity preserving

Define fe(x) =1 - Fe(x) . The family F

G
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if and only if (1, ?e(xl). ?e(xz)) is a WCT-system on T for every fixed
pair Xp < Xy .
Proof:
The condition asserts that for X < Xy and 00 < 61 < 92 =
- 1 F, (xy) F, (x,)
)
! eo(xl) -60 | —eo 2
1 . (x) > 0, 1 Fe (xl) Fe (xz) >0, (4.1)
61 1 L _1
1 F, (x) F. (x,)
62 1 62 2

The first inequality means that F o 1s stochastically increasing and we have
already remarked that this is necessary and sufficient for X, to be

nondecreasing whenever 3 is. We may therefore assume that ?e(x) is

nondecreasing in 6 for every fixed x and restrict attention to the second
inequality.

Let g, be nondecreasing and let g8, = f(gl) where f 1s convex on
gl(x) . Since a convex function can be extended to a convex function on an
interval, the same reasoning that we used in the proof of Lemma 3.2 shows
that we need only be concerned with functions f that are linear znd functions
f of the form

£(y) = 0 for Y £ Y “.2
.2

y - yo for y > yo J

Without loss of generality we may assume that Yo = gl(xo) € gl(x) . For linear
f , Xy {s linear and hence convex with respect to Xy Only functions f of
the form (4.2) remain to be considered and as a result we have the following

necessary and sufficient cendition for a stochastically increasing family Fe

to be invariant convexity preserving:
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For everv nondecreasing g, and every Xg € X,

x,(8) = ! (8, () - g (x()) dF(x)

o

is convex with respect to xl(e) .

By an approximation argument onc shows that it is sufficient to consider
only those functions £ that are left-continuons, nondecreasing step-functions

assuming finitely many values. But then the above condition becomes:

For all m=1, 2, ..., all x) < x2 € aes € X all a, > o,

i=1,2, ..., my all 1 <1 ¢m and all ¢ ,

0
m -
121 ay Fe(xi) 4.3)
0
is convex with respect to
? -
a, F.(x;) +¢ . (4.4)
1=1 i 671

Since (4.4) is nondecreasing in 8 and (4.3) is constant on any set where (4.4)
is constant, the determinantal convexity definition (2.11) for k = 1 applies.
By subtracting from the second column in this determirant we find that convexity

of (4.3) with respect to (4.4) is equivalent to

i-1
1o T oo
1 a,F_ (x,) a F_  (x,)
=1 i 60 i 1‘10 i 60 i
. o (4.5)
s 1§-1 i ? »
1 a,F_ (x,) a (x.)
1=1 | 62 i { io i 02 i
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1 Feo(xi) }eo(xj)
1 -1 .
Pod
= a,a s " >0 .
=1 y=1, 1 -
1 F. (x,) F, (x,)
0, 1 0,

By choosing 10 =m= 2 we find that condition (4.1) 1is necessary; since svery

term in (4.5) has X < xj it is also sufficient. This completes the proof of the

theorem.
It may be of interest to compare the sufficient condition that Fe possesses

a TP3 density p(x, 68) with the necessary and sufficient condition of the

theorem. One easily shows that the TP, assumption for p implies that

3

?e(x) is TP, , or

3

> 0, F.o(x)) F_, (x,) Fe (xz) >0, (4.6)

for Xg < X) <%y and eo < 61 < 02 . By letting X tend to -» we see that
(4.6) implies (4.1). Hence the condition that fe(x) be TP3 is also suffic’ent
for Fe to be invariant convexity preserving.

If we restrict ourselves to the special case where the parameter set T Is
an interval and fe(x) is differentiable with respect to 6 , it turns out that

theorem 4.1 involves a TP2 instead of a TP3 condition.

Theorem 4, 2:

Let T be an tnterval and let q(x, 9) = :’% f’u(x) be defined on T for
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all x . Then the family FB is invariant convexity prescrving if and only if
q 1is TP2 .
Proof:

The first inequality in (4.1) is equivalent to q > 0 . Since FB(XZ)
is constant on any set where Ee(xl) + Fe(xz) is constant and the latter is
nondecreasing in 6 , the second inequality of (4.1) asserts that ?e(xz) is
convex with respect to Ee(xl) + §9(x2) . This in turn is equivalent to
q(xl. 91) q(XZ' 92) - q(xl, 62) q(xz, 61) >0 for X) < X, and 8, < 62 "

It is tempting to ask whether Theorem 4.2 can be generalized. One
conceivable generalization would deal with invariant Ck preserving families
F

i.e., families for which is nondecreasing and Xy is C, with respect

X1 k

to Xy whenever 1 is nondecreasing and g is Ck with respect to g -

6 ’

However, even a cursory inspection shows that only trivial examples cf such
families exist. The necessary requirement that Xy be a polynomial in Xq
of degree at most k whenever gy is a polynomial in g1 of degree at most
k , cannot be satisfied for every nondecreasing 21 except in a trivial
manner.

A more promising generalization is to consider familles Fe that transform

WCT-systems {1, Bls s 8k+1) into WCT-systems {1, Xy } . 1If one

(X} Xk+1

restrict attention to the case where X and T are intervals and 24 and

Fe satisfy certain regularity conditions, one shows in a fairly straight{orward

manner that a necessary and sufficient condition on Fe is that q be TPk+1 »
“hus generalizing Lemma 3.1 and Theorem 4.2 to the case where k > 2 . We may
conclude that although something may be lost for k > 2 , the basic reason that

Theorems 4.1 and 4.2 work is not the fact that k = 1 in that case, but that

gy - 1 and that Fe are probability distribution functions.
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